вторник, 5 июля 2011 г.

Лазерная революция.

Сейчас в СМИ часто говорят о случаях ослепления лазерными указками пилотов самолетов. Что же такое ЛАЗЕР?

Мы все настолько привыкли к слову ЛАЗЕР, что уже и не предполагаем, что это всего лишь аббревиатура. На самом же деле, слово "лазер" ("laser") составлено из начальных букв в английском словосочетании Light Amplification by Stimulated Emission of Radiation, что в переводе на русский язык означает "усиление света с помощью стимулированного испускания излучения".
Исторически считается, что лазер изобрели русские ученые Басов и Прохоров в 1958 году, за что и получили Нобелевскую премию в 1964 году, вместе с американцем Таунсом, чьи работы Прохоров использовал при разработке. Однако американцы же первыми изготовили рубиновый лазер и наладили серийный выпуск, это была фирма Хьюз Эйркрафт. А ещё ранее, в 1916 году Альберт Эйнштейн предсказывает саму возможность индуцирования внешним электромагнитным полем излучения атомов, на основе чего в дальнейшем и будут работать все лазеры.
Изобретение лазера относится к одному из самых значительных открытий ХХ века. И оно, конечно, сильно повлияло на мир. Сейчас нет ни одной области, в которой бы не применялся лазер. В настоящее время области применения лазеров расширяются с каждым днем. После первого промышленного использования лазеров для получения отверстий в рубинах для часов эти устройства успешно применяются в самых различных областях, при этом используются различные типы лазеров.
Принято все лазерные системы делить на три основные группы: твердотельные лазеры, газовые и полупроводниковые лазеры. Некоторое время назад появились такие системы, как перестраиваемые лазеры на красителях, твердотельные лазеры на активированных стеклах.
Особое место среди этих систем занимает СО2–лазер, относящийся к группе газовых лазеров. Эти типы лазеров способны выдавать мощность от нескольких ватт, до десятка киловатт. Так как для этих лазеров требуется такие широко применяемые газы, как Не, Ar и СО2, они нашли массовое применение в промышленности. И хотя КПД этих лазеров не высокое, 5-10% этого вполне достаточно, чтобы такие типы обработки, как лазерная резка, сварка и термообработка были конкурентоспособными.
Наиболее развитым из представленных процессов, на сегодняшний день является лазерная резка. По сравнению с другими методами резки: кислородная, плазменная и др. лазерная резка обладает значительными преимуществами, такими как: высокая скорость и точность резки.
Однако сам технологический процесс не так прост, как казалось бы должно быть. Луч с помощью систем зеркал или оптоволокна подают строго вертикально по отношению к обрабатываемой поверхности и фокусируют с помощью линзы. Попадая на поверхность изделия луч мгновенно доводит материал до температуры плавления и выше. Для обеспечения качественного процесса необходимо выдувать расплавленный материал иначе процесс резки превратится в сварку. Обычно для этого используют кислород, азот и другие газы, которые через специальное сопло выдувают в место действия фокального пятна. Сопло диаметром не более 1,5мм в процессе движения геометрически должно находиться в одном месте, для чего необходима специальная система, которая бы контролировала и давление, и необходимый зазор между поверхностью детали и соплом. Устройство, которое непосредственно включает в себя систему фокусировки и систему слежения называют режущей головкой (cutting head).
В итоге, для того чтобы обеспечивать резку деталей по необходимому контуру нужна трёхкоординатная система ХYZ, где перемещение режущей головки по двум осям XY идёт по заданному контуру (по программе), а третья координата Z автоматически отслеживает расстояние до поверхности или же настраивается вручную оператором. Наиболее распространённая системами считаются координатные столы портального типа с «летающей оптикой».
Лазер - это техническое устройство, свойства и функции которого нужно изучать и применять только для пользы человека!

Источник